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SUMMARY

A real-time dlgital simulator of a Pratt and Whitney FIOO engine has been

developed for real-time code verification and for actuator diagnosls during

full-scale engine testing. This self-contained unit can operate In an open-

loop stand-alone mode or as part of a closed-loop control system. It can also

be used for control system design and development. Tests conducted in conjunc-
tion with the NASA Advanced Detection, Isolation, and Accommodation program

show that the simulator Is a valuable tool for real-time code verification and

as a real-tlme actuator slmulator for actuator Fault diagnosis. Although cur-

rently a small perturbation model, advances in microprocessor hardware should
allow the simulator to evolve into a real-tlme, full-envelope, full engine

simulation.

INTRODUCTION

The FIOO engine simulator was designed to support the Advanced Detection
Isolation and Accommodation (ADIA) FIOO englne test. The objective of the ADIA

engine test was to demonstrate the application of analytical redundancy to the
detection, isolation, and accommodation of englne sensor failures (ref. l).

That is, to show that the engine can continue to be controlled accurately -
even during transients - with one or more of the engine sensors giving false

readlngs. The obJectlve of this engine test was also to demonstrate that the
ADIA software works on a real engine and is, therefore, reliable and useful in

a real environment. This software had already been successfully tested on a

hybrid computer simulation of the engine (ref. 2). Due to the usual uncertain-
ties associated with a full scale engine test, it was determined that should

changes to the control computer's software be necessary, a simulation of the

englne would be requlred for software verlflcatlon. The simulator which has

been developed is a portable box which could be taken into the Propulsion Sys-

tems Laboratory (PSL) to verify any changes in the control interface and moni-

toring (CIM) unit's (ref. 3) software before the CIM unit was used to control

the engine. The slmulator was installed in the PSL as shown in flgure I.

Swapping a patch panel allows the CIM unit to control either the engine or the

simulator. This change Is completely transparent to the CIM unlt. This tech-

nlque m|nlmlzes rlsk to the engine whlch mlght otherwise occur if the control-
ler's software contains a serious error.



The FIO0 engine is a high performance, twin-spool, low by-pass ratio,
turbofan engine. Figure 2 shows the locations of the englne Inputs which are
defined In table I. Figure 3 shows the locations of the engine sensors defined,
along with the other simulator outputs, In table II.

The simulator Is based upon a HYTESS-like model (refs. 4 and 5) of the FIO0
englne wlthout augmentatlon (afterburnlng). HYTESS Is a slmplifled FORTRAN slm-
ulation of a generalized turbofan engine. To create the slmulator, the orlginal
HYTESS code was revised to incorporate FIO0 specific parameters. Additionally,
the executive was adapted from that of the ADIA code (ref. 6) which executes in
the ClM unit.

This report describes the design and implementation of the FIO0 real-time
portable englne simulator. The report discusses the simplified englne model
and the actuator and sensor models used In the simulator. Next, the design of
the microcomputer implementation, includlng the hardware and software design
details, is described. A user's manual Is included with step by step Instruc-
tions of how to use the simulator. Performance comparisons with the real
englne are presented. Finally, recommendations for future work are given.

MODEL

The originai full nonlinear simulation of the FIO0 engine is a 13 000 llne
FORTRAN program. It incorporates detailed descriptions of both steady-state
and dynamlc engine operation throughout the entire flight envelope. This slmu-
lation very accurately reproduces the engine's performance but requlres very
large amounts of digital computer memory and processlng time. The HYTESS turbo-
fan engine simulation was developed to provide a structurally simpler alterna-
tive to engine simulation and thus reduce computer storage and processing
requlrements.

Since the main objective of the sfmulatoF is real-time execution, an FIO0

engine simulation with a HYTESS-Iike structure was used. The HYTESS-IIke model

enables much more efficient calculation of the englne dynamlcs than the full

nonllnear model. The penalty for this efficiency Is (1) a small loss In accu-

racy and (2) the relationships between physical elements of the engine are
lost.

The HYTEss-Iike model is set up In state space form using the vector dif-

ferential equations

- f(x,u,@)

y = g(x,u,@)

(I)

where x Is the vector of intermediate engine variables or state variables,

Is the derivative of x with respect to tlme, u Is the vector of control

inputs, ¢ is the vector of environmental conditions, and y Is the vector of
engine outputs. Clearly, at steady-state points,

= f(xb,Ub,@ b) = 0

Yb = g(xb,Ub,@b)

(2)



where the subscript b denotes a steady-state polnt on the operating line

known as a base polnt. In other words, selecting Yb and @b vectors deter-

mines steady-state xb and ub vectors such that the quadruple (xb,Yb,Ub,@ b)
satisfies equation (2), Typical base points representative of the entire

f]ight envelope at a power lever angle of 83 ° are shown in figure 4.

Generally, state-space equations of a system linearlzed about the operat-
ing point (Xb,Ub,Y b) are of the form

: F(x - x b) + G(u - ub)
(3)

Y : Yb + H(x - x b) + D(u - ub)

where F, G, H, and D are system matrices of the appropriate dimensions. The
full nonllnear FIO0 mode] was linearized at each base point using perturbation
techniques. Thus, the state-space model is accurate in the neighborhood of a
base point. The actual equations used In the model are of the form

= F(y,@)[x - Xss]

y = yb(y,@) + H(y,@)[x - xb(Y,@)] + D(y,Q)[u - ub(Y,@)] (4)

Xss - xb(Y,¢) - F-IG(y,Q)[u - ub(Y,@)]

where the subscript ss denotes a steady-state polnt near a base polnt. This
formulation was used to separate the dynamic and steady-state effects that the
system matrix parameters have on the model outputs. It is clear that the equa-

tlons for y In equations (3) and (4) are equivalent. To show that the equa-
tions for x are also the same, the equation for Xss must be substituted
into the equation for x in equation (4) as follows:

= F(y,¢)[x - Xss]

- F(y,@)[x - {xb(Y,@) - F-lG(y,@)[u - Ub(Y,@)]}]

- F(y,@)x - F(y,@){xb(Y,@) - F-lG(y,@)[u - ub(Y,¢)]}

= F(y,@)x - F(y,@)xb(Y,@) + FF-IG(y,@)[u - ub(Y,@)]

= F(y,@)[x - xb(Y,@)] + G(y,@)[u - ub(Y,@)]

Therefore the systems of equations In (3) and (4) are equivalent.

The llnearized system is fourth order, in other words the state vector
contalns four elements whose derlvatives are Integrated to evolve the system
In tlme. These elements represent actual engine variables: fan speed (NI),
compressor speed (N2), burner exit slow response temperature, and fan turbine
inlet slow response temperature. The first two elements are also the first
two engine outputs. Using I09 base points, the original nonlinear simulation
had been 11nearized to a set of I09 fourth order realizations. In the FIO0
model as in HYTESS, the elements of the matrices F, F-IG, H, and D are non-
linear polynomials. These polynomlals were determlned by a curve-fitting algo-
rlthm used to regress each matrlx element upon elements of y and @ or upon
elementary functions of y and @. Thus the polynomial matrices approxlmate



the data points, i.e., they approximate the system matrices determined by the

use oF perturbational techniques at each base point. Therefore, at each point

in the envelope, the po]ynomlals need only be evaluated to determine the system

matrices. The definitions of these polynomlals appear in reference 7.

The actuators and sensors are, For the most part, modeled as First-order

lags with a small dead zone or other small nonlinearity Included. In general,

the nonlinearities are added after the lags are evaluated. This allows the

sensor and actuator models to be evolved using closed-form equations. These

equations are the standard zero-order hold z-transform solution of a linear

flrst-order equation. Specifically,

y([k+l]T) = u(kT) - [u(kT) - y(kT)]e -T/_

where T Is the time step, u(kT) is the Input to the lag at time kT, y(kT)

is the output of the lag at time KT, and _ Is the time constant of the lag.

In some cases the output of thls linear model is altered to incorporate a non-

linearity by, for instance, setting it equal to zero If its magnitude Is less

than some relatively small value. The tlme constants used are slmilar to those

used on the hybrid simulation and are very close to those of the real Instru-

mentation being modeled.

IMPLEMENTATION

The simulator consists of a rack-mountable microcomputer chassis, a dual

floppy dlsk drive unit, and a CRT terminal. The microcomputer chassis has nlne

Multlbus/IEEE 796 compatible expansion slots and a power supply. The chassis

contains the five boards shown In figure 5. The slmulator software executes on

an INTEL 86/30 single board computer (ref. 8) with an 8086 microprocessor, an

8087 floating point coprocessor, and 256 Kb of random access memory. Table Ill

lists the Jumper connections used on the 86/30 board. A Zendex ZX-2OOA single
board disk controller (ref. 9) Is Included to communicate with the dlsk drives.

A data translation DT 1742-32 DI 32 channel, differential input A/D converter

(ref. lO) accepts the analog contro] signals from the controller. Finally,
there are two data translation DT 1842-8-V 8 channel D/A boards (ref. lO) which

convert all of the slmulated outputs to analog voltages. Table IV lists the

pin connections from the D/A boards for each output variable.

The simulator software consists of 21 routines, II in FORTRAN and I0 in

8086 and 8087 assembly language (ref. Ill. In addltlon, the simulation uses
functions and utilities contained in four libraries. The routines share varia-

bles through common blocks of memory. These common blocks are listed in
table V and their contents are described In table VI.

For proper stability and accuracy a good rule of thumb is that a numerical

(Euler) integration tlme of not more than one quarter the control Interval
should be used in the simulation. Use of this rule wlll reduce the Interactlon

between the simulation and the control by reducing any phase shift due to tlme

delays in the simulation. The ADIA control interval was 40 msec. Thus a slmu-

lator integration tlme of lO msec was the goal. As a full envelope slmulatlon,

the minimum achievable update time (integration tlme) for the slmulatlon was

approximately 40 msec or four times the desired Interval. To overcome thls

problem, a drastic reduction In the cycle time of the algorithm was requlred.



It was possible to determine the execution time for each major subroutine.
Most of the FORTRAN code had already been optimized (ref. 12) so the execution
time for each routine was essentially the minlmum possible. Several alterna-
tive solutions to the execution time problem were considered. These included

uslng a faster processor, putting the simulation on multiple computers (paral-
lel processing), and/or modifying the structure of the software. To avoid hav-
ing to change the microcomputer hardware, the simulator software was modified.
The simulator was changed from a full-envelope model to an operating point
model. This was achieved by breaking the simulation into two loops: an
initialization loop and a real-time run loop. Now the base points and the
matrix elements are calculated in nonreal time (these are the longest routines)
and then, in the real-time loop, the system equations are evolved as a set of
linear equations to the new operatlng condition. This allowed the real-time
loop cycle time to be reduced to 12 msec. The result is a linear model valid
within a small reglon about a given operating point. This model gives excel-
lent steady-state results and good transient results for small perturbations,
such as small movements of the power lever angle (PLA). However, the model
will not perform accurately for large perturbations such as large PLA
movements.

Description of Modes

The simulation can operate in five different modes depending upon the
application. The modes are: initialization/run, PSL/hybrld, calibration,
open-loop/closed-loop, and actuators only. These modes are controlled by soft-
ware switches described in table VII.

Initialization/run. - In the Initialization mode, the simulator initial-
izes variables to their desired steady-state operating point values. Initial-
ized variables include the engine base points and the open-loop setpoints. In
the run mode, the simulation enters the real-time loop. Here the state equa-
tions are evolved from the previous operating point to the desired operating
point using Euler's method for numerlcal Integration. These two modes are a
consequence of the fact that the simulation is not fast enough to accurately
model the whole flight envelope dynamically in real time.

Propulslon system lab (PSL)lhybrid. - The PSL mode scales the control slg-
nals and alters the simulator outputs to correspond to those of the englne in
the PSL. Initlally the inputs and outputs of the simulator were scaled identi-
cally to the inputs and outputs of the FlO0 Hybrld Simulation. These were all
±10 V, straight line representatlons of the engine inputs and outputs. How-
ever, the actual engine input and output devlces consist of linear potentiome-
ters, resolvers, thermocouples, flowmeters, and electro-hydraulic actuators.
These devlces typlcally do not accept or produce ±lO V, linear slgnals. Thus,
while the system was in the PSL, the scaling for the control inputs from the
ClM unit to the engine slmulator had to be mapped to the equivalent scaling for
the hybrid slmulation. Likewlse, the scaling for the outputs of the slmulator's
sensors had to be mapped to the equivalent scaling values for the actual engine
sensors so the ClM unit received the same values the engine sensors would
produce. For some variables the difference between the hybrid and the PSL mode
was simply a different scale factor. In the nonlinear cases the PSL varlable



had to be mappedthough a look-up table or a polynomial curve in addition to
being scaled. These curves and polynomials were determined experimentally dur-
ing the englne test calibration procedure.

Calibration. - The calibration mode is used to test the input/output vari-
able mappings. Once a map has been determined and implemented, it must be val-
idated with the simulation and controller. The calibration mode allows the

user to bypass the system evolution subroutlnes, independently set a variable
to an intermediate value in engineering units, and examine the corresponding
output value. In the same way, the simulator can receive analog inputs and
the user can examine these values in engineering units once they have gone
through conversion. Using this method, the user can determine if the values
are being scaled correctly.

Closed loop/open loop. - In the closed-loop mode the simulator receives
the control signals from an outside source such as the ClM unit. In the open-
loop mode the simulator uses base point values stored in its memory for the
control slgnals.

Actuator. - The actuator mode is used to simulate only the engine actua-
tors. To ensure that the real actuators are all working correctly and since
they are quite simple to model accurately, the simulator can be run in parallel
with the engine and the simulated and actual actuator feedback values compared.
The only difference between the actuator mode and the run mode of the simulator
is that in the actuator mode TT2, the only independent variable which the actu-
ators require beside the control signals, is obtained as input from the facll-
ity (Propulsion Systems Laboratory) rather than calculated by the simulator.
Since no other information Is required and the actuator calculations are fairly
simple and accurate, the simulator is used as a full envelope real-time slmula-
tor for the actuators. The engine model outputs are not used in this mode
since the base points are not recalculated at each operating point.

The modes are all defined by software switches which can be toggled using
MINDS (ref. 13). MINDS is a program used to examine and to set values of mem-
ory locations. To the user, MINDS looks like an interpreter. The user types
in commands and MINDS carries them out. MINDS executes in the background and
is interrupted by the timer at the beginnlng of each initialization or run-tlme
cycle (fig. 6). Even though it runs for only about 17 percent of the time in
the run-tlme loop, to the user it appears to be running cont!nuously. MINDS
can be used to examlne and/or set the software mode switches and also to
examine and set any parameter within the simulation. In addition, MINDS can
be used to collect transient data, that is, to examine memory locations period-
ically over time, and to display that information graphically. Due to memory
constraints in the simulator, the transient data capability of MINDS was not
Included.

The simulator uses the CP/M-86 disk operating system for loading the simu-
lator program from disk, for saving MINDS data to disk, and for communicating
with the user terminal. This operating system has a limitation that the total
space for code and data may not be more than 64 Kb. The total memory required
for the simulator, including the reduced capability version of MINDS, is about
50 Kb, approxlmately two-thirds of which is code and one-third is data.



PROGRAM EXECUTION

After the system is booted, the program can be executed by typing the name
of the disk drive where the program disk is located followed by a colon and the
name of the program. When the RETURN key is pressed, the executable code is
loaded from disk and executed.

The program starts execution in the executive (fig. 7). The executive
initializes the update intervals, sets up the memory appropriately and takes
care of the administrative details. Then it executes two routines, MSET
(fig. 8) and MTRXST (fig. 9). They are routines for initialization of con-
stants such as time constants, the exponents associated with each time con-
stant, and the initial conditions. Once the program setup is complete it is
not repeated since the setup information will never change. Following setup,
the program enters the initialization loop by set.ting the interrupt timer
(fig. 6). This loop does not have a real-time cycle constraint (it has no time
dependency) but it repeats every 50 msec. Here it executes INLET (fig. I0)
which calculates the ambient conditions based on the altitude and Mach number.

Then it goes to EMODEL (fig. II) which determines the base points and matrix
elements by evaluating polynomials whose coefficients are functions of the
ambient conditions. The scheduled values of engine variables are calculated
in the subroutlnes RPFAND (fig. 12) and RPLIMD (fig. 13) which are called from
EMODEL. The operating point is requested using MINDS. The operating point is
automatically initialized to sea-level static, standard day conditions, 83 °
PLA. Base point values at this condition are also stored as the initial con-
trol values for that operating point in the open loop mode. Any extra time In
this loop is used by MINDS to accept inputs from the user. He can change alti-
tude and Mach number and the next time through the loop everything is recalcu-
lated for the new conditions. Since everything in the initialization loop is
calculated directly, the loop need only be executed once after a change is made
for the values to be correct. The user can also set the switch to go from the
initialization loop to the run loop while in MINDS. Figure 14 shows the pro-
gram flow as the initialization/run switch, RLOOP, is set and reset. The
update interval is short enough to essentially guarantee that the loop will be
executed at least once after the conditions are changed to obtain the correct
values before the switch can be set. The program is ready to be used interac-
tively once the MINDS prompt (>) appears.

Setting the appropriate software switch puts the program into the real-
time mode. The run loop consists of the dynamic routines. This loop has an
update interval of 12 msec and during that tlme the control input routine,
actuator routine, the system evolution routine (numerical integration), and
the output signal routine all execute. The first section receives the control
signals from the CIM unit and converts the scaled integers to real numbers.
ACTUAT (fig. 15) takes the real commanded values and evolves the actuator
models to their value at the current time step. This output is used by EVOLVE
(fig. 16) to integrate the differential equations describing the engine itself.
Over tlme, the numerical integration will bring the simulation from its previ-
ous steady-state point up to the new steady-state point with a linear, non-
realistic transient. The new steady-state point is, however, accurate and
realistic. After EVOLVE executes, the engine outputs, actuator feedbacks, PLA,
and the ambient conditions are converted to scaled integers and sent via D/A
converters to the CIM unit. The I/0 sections are part of the multiplexer
interrupt service routine section of the executlve (fig. 17). Any spare time



is used by the messagegeneration routine or MINDS. The messagegeneration
routine takes prlority over MINDSif it needs to execute but it is only used
to print out error messages. A more In-depth description of the simulator's
operation is given in appendix A.

Many of the routines listed above call their own subroutines which do
table lookups or some other type of calculation. The relationships are shown

in figure 18. A complete list of the routines with a description of each

appears in appendix B.

Exception Handling

There are three noncatastrophic exceptions which, if they occur, will

cause incorrect operation of the simulator. They are: (1) floating point,

<2) divide by zero, and (3) update failure. The first two produce an interrupt
and are handled by interrupt service routines (figs. 19 and 20). Update fail-

ures are detected by a flag check routine within the timer interrupt service

routine (fig. 21). When the timer signaling the start of the real-time run

loop interrupts the simulation, the service routine checks the update failure

flag. Since the flag is reset near the end of the multiplexer interrupt serv-
Ice routine (fig. 17), a reset update failure flag indicates no problem. How-

ever, if the flag is still set at the start of the timer service routine, it

means that the cycle was unable to finish the previous time through the loop

and an_update failure is declared.

One of the results of these interrupt service routines is to give the user

an indication that the error took place by printing a message to the user ter-

minal. This printing is done in the time remaining at the end of the real-time

loop. Printing a message is a slow process and may take several cycles of the

run loop to complete. Because more than one error might occur in a single

cycle and each takes so long to print, a data structure is used to store the

starting addresses of each error's corresponding message. Up to 15 addresses

can be held in this circular queue. Figure 22 shows the way starting addresses

of messages are saved. It is a more detailed version of the boxed area in

figures 19 to 21.

After the digital-to-analog conversion of the simulator outputs in the

run loop, the program checks the error message queue. If no printing is in

progress and a message is waiting to be printed, the program will initiate

printing the message at the head of the queue. Otherwise the program returns

to the task which was interrupted by the current cycle of the run loop - elther

MINDS or printing a message. The message generation code, MESGEN (fig. 23), is

actually a portion of the multiplexer interrupt routine and is shown in the

boxed region of figure 17.

Figure 24 demonstrates the way the pointers move around the queue when
two errors occur in rapid succession and are then printed out to the terminal
device. The operation of the total noncatastrophlc error handling system can
be understood by tracing through the flowcharts in figures 17 and 19 to 23.

In general, the user would like to know the cause of any errors which
occur. To help him determine what happened, both the divide interrupt service
routine and the 8087 exception service routine save the instruction pointer and

ii_-!Ii-



the code segment of the instruction after which the error occurred. These val-

ues can be examined vla MINDS to determine which line of code prompted the

error. In addition, the 8087 exception handler stores the 8087 status word and

the address of the 8087 environment. Since this saved information would be

overwritten the next time a similar error occurs, these two service routines

each set a latch to prevent new information from being stored. After the data

have been examined, the user can use MINDS to reset the latches in preparation

for the next error should one occur.

The only catastrophic error which is handled by an interrupt is a system
bus timeout error (fig. 25). This error usually means that program control is

lost and that execution has ceased. The timeout interrupt brings control to

the service routine where it remains until the routine has executed and control

is returned to the previously running instruction address. If this error

occurs, a message is printed out immediately in the service routine. The mes-

sage contains the location of the instruction pointer and code segment of the

calling instruction which failed. This can be used to aid in reconstructing

what caused the timeout.

A list of the messages which can be printed appears in table VIII.

SIMULATION RESULTS

The steady-state accuracy of the model is excellent. This is because the
HYTESS-Iike model was based on the steady-state performance of a turbofan

engine and the base point calculations which define steady-state performance In
HYTESS were derived from steady-state data. Also, the steady-state and tran-
sient accuracies of the actuator simulation are excellent. The full engine
translent performance for small perturbations about a given operating point is
also quite good. The full engine large perturbation transient performance is
qulte limited since the engine is modeled as a linear system in the run loop.

CONCLUSIONS

Tests conducted in conjunction with the FIO0 Hybrid Simulation evaluation
of the ADIA algorithm showed that the simulator works well as a real-time,
steady-state and small perturbation substitute for the full hybrid, nonlinear
simulation. The full-scale engine demonstration of the ADIA proved the capa-
bilities of the simulator as a real-time code verifier and as a full envelope,
real-time actuator slmulator for actuator fault detection. This real-time,

portable simulator capability will be valuable in future engine tests. With
the rapid increases in microprocessor capabilities that have occurred since the
FIO0 simulator was built, it is conceivable that full envelope, full engine
simulation can now be achieved in real-time.



APPENDIX A

USER'S MANUAL FOR FIO0 ENGINE SIMULATOR

I. Turn on all of the equipment, I.e., the chassis, the dlsk drive, and
the terminal.

2. Insert the system disk into drive a: and the program disk into drive

b:.

3. Boot the simulator by pressing the RESET button on the chassis.

4. Nhen the simulator has booted, load and start the program by typing
b:(program-name>(RETURN).

5. Thls causes the program to start executlng. It goes through the one-
tlme Inltlallzation routines, MSET and MTRXST, and enters the InltlaIizatlon

loop containing INLET and EMODEL. In the spare tlme in this loop, MINDS runs,

allowing the values of variables and flags to be changed. The MINDS variable
definitions must elther be entered by hand or loaded from dlsk. Choose the

mode In which the program is to be run. Thls can be changed at any tlme very

simply. The default mode Is Initlallzation/hybrld/open-loop. Each switch

(flag) can be changed Independently.

6. Altitude and Mach number, ALT and XMO respectively, can be changed

through MINDS. They are both initialized to 0.0, i.e., sea-level static condl-

tlons. Power lever angle is Initialized to 83 °. The ambient conditions, which

are all calculated in INLET, depend on these values. The ambient conditions

are initialized to standard day conditions, I.e., about 14.7 psl and about

59° F. For changes of these two variables to have any affect, the program must

go through the Initialization loop one time. The base points are calculated

here and their values are stored for the additional purpose of being the set-

points In the open-loop mode.

7. Setting the value of RLOOP to I puts the slmulation into the real-tlme

run loop. The routines take about lO msec to run leaving approximately 2 msec

for MINDS provided there are no error messages to be printed. In this mode,
MINDS can be used to check the value of varlables and to switch modes.

8. Setting RLOOP to 0 again returns the program to the inltiallzatlon

loop but leaves the value of every variable unchanged. Thus a transient can

be stopped and restarted (If the program Is In open-loop mode) or the operating

conditions can be altered to move the system to another operating point.

9. To stop the simulation, reboot the system by presslng the RESET button

on the chassis w|th the system disk in drlve a:.

IO
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ROUTINE

ACTUAT

ALTABL

ClMDAC

EMODEL

EVOLVE

EXEC

FUN1

FUN2

FUN3

HFTA

INLET

APPENDIX B

DESCRIPTION

This FORTRAN subroutine simulates the actuator dynamlcs and lags each
one to approximate the sensor dynamics on each actuator's output.
The scheduled value of nozzle area computed In RPLIMD Is used in the
nozzle area simulation except in the actuator mode where the sche-
duled value of nozzle area is calculated based on TT2 provided as an
analog input to the simulation.

This FORTRAN subroutine takes the altitude and returns the 6 and e

corresponding to the ambient conditions.

This assembly language program takes a 16-bit scaled Integer and con-
verts the twelve most signiflcant bits to analog for output over a
specified digital-to-analog converter channel.

This FORTRAN subroutlne calculates ub, x b, and Yb from the refer-
ence point schedules and computes the elements of the F, F-IG, H,
and D matrices by evaluating functions of the amblent conditions
and reference point schedules.

This FORTRAN subroutine uses Euler integration to compute the current
values of the engine outputs. It also simulates the output sensor
dynamics by lagging each output.

This assembly language program Is the maln routine for the FIO0 slmu-
latlon. It calls the other major subroutines and contalns the inter-

rupt service routines.

This assembly language program does a table look-up and interpolation
on a function of one variable.

This assembly language program does a table look-up and interpolation

on two functions simultaneously where the functions use the same

independent variable and the values of the two functions are known

for the same values of the independent variable.

This assembly language program does a table look-up and interpolatlon

on two functions simultaneously where the functions use the same

independent variable and the values of the two functions are known
for different values of the independent variable.

This FORTRAN function returns enthalpy as a function of temperature.

This FORTRAN subroutine calculates the inlet conditions of the
engine, TT2 and PT2, and the compressor inlet temperature, TT25. The
dynamlcs of the temperature and pressure sensors are included for
completeness but are multiplied by zero. The sensor dynamics are not
used because the simulation Is a steady-state model and is only accu-
rate at the specified operating points, not between them.
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MESSAGE

MINDS

MSET

MTRXST

NEFG

PRCMB

PVAL

RFUNI S

RPFAND

RPLIMD

TFHA

This routine, part of the MINDS Library, prints an ASCII string on
the console.

Microcomputer l_.NNteractiveData System Is a program used to examine
and change memory locations in 8086-based systems. Because of memory

constraints, a reduced capability version of MINDS, SMINDS, was used.
For more information, see reference 13.

This FORTRAN subroutine initlalizes variables such as ambient condi-

tlons, engine states, engine outputs, actuator outputs, all both

unlagged and lagged to slmulate sensed values, time constants, asso-

ciated exponentials, and integration step size.

This FORTRAN subroutine initializes the elements of the H and D

matrices which remain constant at all operatlng conditions. The flag

DFLAG is initialized to O. This flag Is used in EMODEL to indicate
whether or not to recalculate several of the matrix elements. The

flag's value must be changed using MINDS.

This assembly language routine does table look-up and interpolation

on a function of one variable using the slope/intercept method.

This FORTRAN subroutine calculates properties of combustion.

This FORTRAN function evaluates a polynomial passed as an argument to
it.

This assembly language program interpolates between points in a

lookup table. It works with small-model programs, i.e., the code

sections of all modules are combined and allocated within one seg-

ment. The program is described in more detail in reference 14.

This assembly language program calculates reference point schedules

for the engine variables. The first time through, the routine starts

at the label RPFANINT which is slightly earlier in the code than

RPFAND. Thls first part of the code initializes pointers which are
used in successlve calls of RPFAND.

This assembly language program is the continuation of RPFAND. It

calculates more reference point schedules and limits for the sche-

duled values. The first time through, the routine starts at the
label RPLIMiNT which is slightly earlier in the code than RPLIMD.

This first part of the code initializes pointers which are used in
successive calls of RPLIMD.

This FORTRAN functlon returns temperature as a function of enthalpy.
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TABLE I. - SIMULATOR INPUTS

Input channel Variable Description
number

Commanded main combustor fuel flow (WF)8
9

10
II

12
13

WFCOM
AJCOM
CIVVCM
RCVVCM
BLCCM
TT2ACT

Commanded exhaust nozzle area (AJ)

Commanded fan inlet variable vane angle (CIVV)

Commanded rear compressor variable vane angle (RCVV)
Commanded compressor bleed (BL) (bleed is used open-loop)
Fan inlet temperature (used only in actuator mode)

TABLE If. - SIMULATOR OUTPUTS

Output channel Variable Description
number

1 Timing DAC Variable-height step output used to determine the running time

2
3
4
5
6
7
8
9
I0
II
12
13
14
15
16

WFFBS
AJS
CIWS
RCVVS
BLFBS

of each subroutine
Sensed main combustor fuel flow (WF)
Sensed exhaust nozzle area (AJ)

Sensed fan inlet variable vane angle (CIVV)
Sensed rear compressor variable vane angle (RCVV)
Sensed compressor bleed (BL) (not used)

POS
PT2
TT2
TT25
Nl
N2
PT4
PT6
FTIT
PLA

Ambient (static) pressure (PO)
Fan inlet (total) pressure
Fan inlet temperature
Compressor inlet temperature
Sensed fan speed
Sensed compressor speed
Sensed combustor pressure
Sensed exhaust nozzle pressure
Sensed fan turbine inlet temperature

Power lever angle

14



TABLE III.- INTEL 86/30 BOARD HARDWARE CONFIGURATION

86/30 Jumper Description
connections

7_II 2 wait states on EPROM access

13-14
38-39
108-109
111-112
118-119
144-145
151-152
158-147

175-176
178-179

184-185
190-194
191-195
205-207

208-209
210-211
215-220
216-221
217-222
219-224
225
226
227
230-231
232-233
240-241
234-235
236-237
33-34

2 wait states on I/O access
Timeout enabled
2716 select
2716 select
128K total ram on board
Ground NMI

Multibus interrupt 5/ to 8259 IR5
Timer 0 interrupt to 8259 1R2
1.23 MHz clock to CTRO - out
1.23 MHz clock to CTR2

153.6 KHZ clack to CTRI
8753 out 2 to 8251TXC
8753 out 2 to 8251RXC
BCLK to Multibus

CCLK to Multibus
BPRO to Multibus - out

Out }

Out
Out
Out
ft. C.

n. C.

n. C.

Out
In
Out
Out
Out
Out

Megabyte 0 (lowest) selected

l ff board address O-IFFFFH
(0 lowest address)

128 K, OIFFFFH upper address

All RAM available to bus, 128 K

Nonbus vectored interrupts
123-124-125
189-193
202-203
213-212
184-175
133-165
134-141
155-166

Out 2 K x 8 EPROM
DTR to DSR

ANYRQUEST line

CBEG line to ground
153.6 KHz clk to CTRO

Timeout interrupt to 8259 IRO
Timeout l int. to 8259 IR7 (for MINDS)
MINT to 8259 IR6

TABLE IV. - D/A BOARD PIN CONNECTIONS

Signal DAC Board Channel Pin number Pin number Comments

number high low

Timing DAC I
WFFBS
AJS
CIWS
RCWS
BLFBS
POS
PT2
TT2
TT25
SNFSEN
SNCSEN
PT4
PT6
FTIT
PLA

17
19
21
23
25
27
29
31
17
19
21
23
25
27
29
31

18
2O
22
24
26
28
30
32
18
20
22
24
26
28
30
32

Not used

NI sensed
N2 sensed
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TABLE V. - ROUTINES AND ASSOCIATED COMMON BLOCKS

Common

XANDZ

FTICFC

'AETOUT

MVCSHT

AMBCND

ACTUAT EVOLVE

X

X

FTSAV x

MATRIX X X

BASEV X X

FILVAR X

EXPS X X

JLCMN X X

RAMREC X

CONTRO_ X

EMODEL

Routine

INLET MSET

X

X

X

X X

X X

X

X X

X X

X

MTRXST RPFAND RPLIMD

X

X X X

EXEC

X

TABLE VI. - CONTENTS OF COMMON BLOCKS

Common

XANDZ

FTICFC

ACTOUT

MVCSHT

AMBCND

FTSAV

MATRIX

BASEV

FILVAR

EXPS

3LCMN

RAMREC

CONTROL

Contents

Engine states, engine outputs, sensed engine outputs

Fan turbine inlet temperature factors used to model FTIT sensor dynamics

Actuator outputs, sensed actuator outputs

Integration time step

Sensed ambient conditions

Slow and fast lag values used to model FTIT sensor dynamics

Matrices F, H, D, and F-IG; and flag, DFLAG

Base points for control inputs, engine states, and engine outputs

Intermediate variables used in system evolution routine

Exponentials for all of the actuator and sensor dynamics

General variables that do not fit in another common

Variables used for ram recovery effect of the inlet

The control inputs to the actuators
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TABLE VII. - SOFTWARE SWITCHES FOR MODE CHANGES

Software Description
switch

RLOOP

PSL

CLLOOP

CALIB

ACTSIM

= O, (default) program runs in initialization loop

= 1, program runs in real-time run loop

= O, (default) scaling of inputs and outputs corresponds to that
of Hybrid simulation

= l, scaling of inputs and outputs corresponds to Propulsion
Systems Laboratory hardware

= O, (default) program runs in open-loop mode, command signals
are taken from memory (the values can be changed using MINDS)

= I, program runs in closed-loop mode, analog command signals
are read in through A/D converters

= O, (default) each routine in run loop is executed fully
= 1, only the A/D converter and D/A converter routines are

executed in the run loop, ACTUAT and EVOLVE are not. Thus the
effect of scale factors for both input and output can be

checked directly using MINDS

= O, (default) scheduled AJ (nozzle area) is proportional to the
steady-state scheduled value calculated in RPLIMD

= l, scheduled AJ is calculated as a function of TT2 read in by
the simulation at each control interval. This should only be
used in the actuator simulation mode.

TABLE VIII. - ERROR MESSAGES

Message Description

8086 F-100 SIMULATION

UPDATE FAILURE OCCURRED

DIVIDE INTERRUPT OCCURRED

FLOATING POINT EXCEPTION OCCURRED

SYSTEM BUS TIMEOUT{_I

IP AT XXXX SEGMENT AT XXXX

Sign on message

Update failure message

Divide interrupt message

Floating point exception message

Bus timeout message

17



F100 ENGINE SIMULATOR
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l RESEARCH
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SYSTEM
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F100

ENGINE
SYSTEM
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PANEL
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I

SENSORS /I

" I

*" I

ACTUATOR
SYSTEM

F100 ENGINE

L._

PLA

i

I I SENSOR I

£1M FAILURE
UNIT = SIMULATOR
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I AMBLEhiT CONDITIONS

FI00
ENGINE
SYSTEM

I

I
I

I

1,11,
PATCH

1
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I
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i
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Flgure 1. - Test setup In PSL.
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ORIGINAL PAGE IS

OF POOR QUALITY

HIGH-PRESSURE TURBINE "-_
\

MAIN COMBUSTOR -_ \ F LOW-PRESSURE TURBINE
\ \ I

', \ ! AUGMENTOR NOZZLE
\ \ / ___.

INLET FAN COMPRESSOR \ ,\ / _ ......

-5_'-- I "\------'--_ _'_'-_
' _,_RE_- "- _,._:_USTOR i

L INLET SOil FUEL FLOW (WF) /

GUIDE VARIABLE L. EXHAUST NOZZLE
VANES VANES t_- COMPRESSOR AREA (AJ)
(CIW) (RCW) BLEED (BL)

Rgure 2. - F100 engine Inp_JtS.

HIGH-PRESSURE TURBINE -'_
\ r- LOW-PRESSURE TURBINE
\ I

MAIN COMBUSTOR -_, \ I
\ \\ I AUGMENTOR NOZZLE

INLET FAN CC_PRESSORX, _\ 2 __

t _ t \ L. PT4 \ \
L PT2 _- N1 LTT25"\-- N2 \ "_" PT6

TT2
FTIT

Figure 3. - F100 sense points.
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INITIALIZATION
PHASE

RUN - TIME
PHASE

r-- INITIALIZATION
I
, OF VARIABLES

P- SET TIMER INTERRUPT
,'_ ,,
' ,-- INLET
I

', _ r- MATRIX
• r.' , CALCULATION

/
I
w

i
i

MINDS
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SET INTEGRATION CYCLE
, TIMER INTERRUPT

, ._READ IN
.-" CONTROL SIGNALS

"'" SEND OUT SENSOR
m B °

.' READINGS
', MINDS",

ACTUATOR SYSTEM '
CALCULA- EVOLUTION
TK_NS

bTIMER INTERRUPT

5O
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bTIMER INTERRUPT

I

I
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I

!
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Figure 6. - Software timing diagrams.

I
I
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I
I
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I

I
I
I

I
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INITIALIZE ES REGISTER IFOR INTERRUPTS
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t
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1
I _,RXSTII

I

l
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Figure 7. - Flow chart foxexecutive routine0 EXEC.
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I

I

I

I

I

I

I

I

I

I

!

22

INITIALIZE VARIABLES AND FLAGS I

INITIALIZE TIME CONSTANT FOR LAGS I

INITIALIZE AMBIENT CONDITIONS I

INITIALIZE PLA J

l
LMTIAL;iZE ENGINE STATE I

l
INITIALIZE ENGINE OUTPUTS I

INITIALIZE ENGINE SENSOR OUTPUTS I

INITIALIZE ACTUATOR OUTPUTS I

INITIALIZE SENSED ACTUATOR OUTPUTS I

INITIALIZE AMBIENTCONDITON SENSOR OUTPUTS I

INITIAUZE AT (INTEGRATION STEP SIZE) I

INITIALIZE ENGINE SENSOR DYNAMICS I

INITIALI71: AMBIENT CONDITON SENSOR DYNAMICS I

l
INITIALIZE ACTUATOR DYNAMICS I

RETURN

Figure 8. - Inltlllzatlon routine, MSET.

I INITIALIZE H I

[
I ,N_IA,,ZEo!

L
I 'N_LIzE°FLAG-°I

IRETURNI
Figure 9. - Matrix InltJaflza_on routine, MTRXST.

11"LT'BL1
CALCULATE P0 AND TO

I CALCULATE TT2, PT1, TT1, 8AND 0

YES TI'25 = fl(')

I_,_ ,_(-II
IRETo_NJ

Figure 10. - FkT_ chart for Inlet routine, INLET.

CALCULATE 8 AND e

CALCULATE VIRTUAL POWER CODE

1
CONVERT ENVIRONMENTAL VARIABLES TO SCALED INTEGERS

I I

I COMPUTE INDEPENDENT VARIABLES FROM AMBIENT CONDITIONS I

OUTPUTS OF REFE RENCE POINT SCHEDULES

J
I coMP_EBASEPO,NTS I

J
I COMPUTE STATE SPACE MODEL MATRIX ELEMENTS

I

_ES CALCULATED D42 AND D52I I
1

L_TuRNI
Figure 11. -Flow chart for routine _o determine mode/a¢ operadng point, EMODEL.
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!

I

!

1

I

I

i

SAVE FORTRAN REGISTERS

SET DS TO BEGINNING OF DATA SEGMENT

INITIALIZE POINTERS FOR TABLE LOOKUPS

1
RESTORE FORTRAN REGISTERS

SAVE FORTRAN REGISTERS

I

SET DS TO BEGINNING OF DATA SEGMENT

1

i

COMPUTE DENSITY

i

COMPUTE N2 SCHEDULES

COMPUTE PT4 SCHEDULES

COMPUTE FAN AIRFLOW

I COMPUTE N1 I

RESTORE FORTRAN REGISTERS

1
UR_URNJ

Figure 12. - Flow chart for setpolnt ¢aJculatJonroutine, RPFAND,

I

!

i

I

SAVE FORTRAN REGISTERS

1
SET DS TO BEGINNINGOF DATA SEGMENT

l
INITIALIZE POINTERS FOR TABLE LO(_KUPS

1
RESTORE FORTRAN REGISTERS

SAVE FORTRAN REGISTERS

SET DS TO BEGINNING OF DATA SEGMENT

I L°_UP_8I

! L_UPF_I

I L°_UPFANSPEEDI

I L,._FANSPEEDI

LIMIT HIGH ROTOR SPEED

LIMIT BURNER PRESSURE "

l
COMPUTE FUEL FLOW AND LIMIT

I _Ew_ I

I COMPUTE_2_I

COMPUTE RCVVI SCI-EDULE

COMPUTE CIVVI SCHEDULE

RESTORE FORTRAN REGISTERS

Figure 13. - Flow chart for setpoint calculation routine, RPLIMD.
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Rgure 14. - Program flow.
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1

Figure 15. - Flow chart for actuator rouUne, ACTUAT.
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1

1
[ CALCULATE Yb + H[x - xD ] + D[u - u b] "Y I

1
I ADD SENSOR DYNAMICSTO ENGINE OUTPUTS I

1

Figure 16. - Flow chart for system evolution routine, EVOLVE.
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I SAVE THE MACHINE STATE I

t
i REINSTATE THE DS REGISTER J

t
I READIN,2_XB_S I

ISH,__E_.B_STOMAKEA_.' ,__ NU_ERI

I STO"_SAMPLEDOATAI
I SE_DEOITO_SOAI

l
l._E_A_ETHE,.TERRU_SI

NO__NO

CONVERT THE SETPOINTS IN
I I CONVERT INPUTS I CONVERT INPUTS, TO REAL NUMBERS I [ TO REAL NUMBERS JMEMORY TO REAL NUMBERS I

t

1
i,_:RE__EL _ER I

ISTART_E_OATA_VERS_I

!RESTOREMAO_,_E_TATEI

IRE_R"I

CONVERT THE OUTPUTS TO SCALED INTEGERS I
AND CONVERT THEM TO ANOLOG SIGNALS I

i

RESET UPDATE FAILURE LATCH ICONVERTTHE OUTPUTS TO SCALED INTEGERS !
AND CONVERT THEM TO ANOLOG SIGNALS

................... ........... .....!

! RESTOREMAO_,_E_ATEI

Rgure 17. - Flow chart for multiplexer interrupt service routine.
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MSET

MTRXST

RFUN 1S

Figure 18. - Hierarchy of sutxoutine calls,

SAVE MACHINE STATE j

I

..................... i

i :
[ I 'LOAD START ADDRESS OF MESSAGE IN QUEUE ;,

a

/ GET THE CODE SEGMENT OF THE OFFENDING INSTRUCTION J
/ I

[ SETTHEMATHEXCEPTIONFLAG I
f

[ SAVETHEADDRESSOFTHE8087ENVIRONMENTI
{

[ SAVE THE 8087 STATUS WORD I

½

[ CALCULATE THE OFFSET OF THE ADDRESS OF THE OFFENDING IINSTRUCTION

l
I SAVE THE OFFSET AND CODE SEGMENT OF THE INSTRUCTION I

' CLEAR THE 8087 EXCEPTION I

LOAD CONTROL WORD, EXCEPTIONS MASKED I

[ SEND EOI TO 8259A I

l
I RESTORE 3"HE STATE OF THE 8086 I
I I

Figure 19. - Flow chart for 8087 exceplion Interrupt service routine.
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Figure 20. - Flow c_art for divide Interrupt service routine.
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I,_V_._¢.,.E ST,_EI
½

IRE"ST'_'_°_"_°'STE"!

PEAL-TIME OPE RATICN

I
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i
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Figure 21. - Flow chart for timer Interrupt service rcNJtJne.
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I GET VALUE (ADDRESS) OF END-OF-CXJEUE IPOINTER, ME SEOQ

INCREMENT IT BY TWO AND WRAP IT
AROUND MEMORY WHERE QUEUE RESIDES

(2 + MESEOQ) AF

_YE S

I STORE STARTING ADDRESS OF ERROR [
MESSAGE AT END OF QUEUE

(MESQ((2 +MESEOQ)AF])

STORE NEW VALUE OF MESEOQ i

- (2 + MESEOQ)AF J

Figure 22. - Fk_w chart for routine for saving stattlng address of error messages.

I CLEAR INTERRUPT ENABLE FLAG J

i
I GET ADDRESS OF BEGINNING OF MESSAGE QUEUE J

i
I ,NCREMENTADDREss'ro,_X',"LO_','O,,,,OUEUE]

!
I STORE NEW ADDRESS OF BEGINNING OF MESSAGE QUEUE I

[ GET ADDRESS OF MESAGE FROM HEAD OF QUEUE J

i,
[ PUSH ADDRESS ON STACK FOR PRINTING ROUTINE I

i
[ SET MESSAGE-IN-PROGRESS FLAG J

l S_,_rERRO.TE_EF_'GI
t

IRESETMESSAGE-,,-,R_RESS_OI

I R_°R"I

Fi0ure 23. - Row chart for message generation routine, MESGEN.

28



MESEOQ
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2,

MESEOQ

4.

MESBOQ -- BEGINNING-OF-QUEUE POINTER

MESEOQ -- END-OF-QUEUE POINTER

Figure 24, - Two messages entering queue and being printed.
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1
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J CONVERT THEM TO ASCII I
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Figure 2S. - Flow chart for system bus tlmeout Interrupt service routine.

3O



Report Documentation Page
Nahonat Ae+o+_ luhcs and

_,p_{. _ Adrnlnrslr _tl+oll

1. Report No. NASA TM-100869 2. Government Accession No.

AVSCOM TR-89-C-00 I

4. Title and Subtitle

A Real-time Simulator of a Turbofan Engine

7. Author(s)

Jonathan S. Litt, John C. DeLaat, and Waiter C. Merrill

9. Performing Organization Name and Address

NASA Lewis Research Center

Cleveland, Ohio 44135-3191
and

Propulsion Directorate
U.S. Army Aviation Research and Technology Activity--AVSCOM

Cleveland, Ohio 44135-3127

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Washington, D.C. 20546-0001
and

U.S. Army Aviation Systems Command
St. Louis, Mo. 63120-1798

15. Supplementary Notes

Jonathan S. Litt, Propulsion Directorate; John C. DeLaat and Walter C. Merrill,

3. Recipient's Catalog No.

5. Report Date

March 1989

6. Performing Organization Code

8. Performing Organization Report No.

E-4578

10. Work Unit No.

505-62-0 I

11. Contract or Grant No+

13. Type of Report and Period Covered

Technical Memorandum

14. Sponsoring Agency Code

NASA Lewis Research Center.

16, Abstract

A real-time digital simulator of a Pratt and Whitney FI00 engine has been developed for real-time code verifica-

tion and for actuator diagnosis during full-scale engine testing. This self-contained unit can operate in an open-

loop stand-alone mode or as part of closed-loop control system. It can also be used for control system design and

development. Tests conducted in conjunction with the NASA Advanced Detection, Isolation, and Accommodation

program show that the simulator is a valuable too[ for real-time code verification and as a real-time actuator

simulator for actuator fault diagnosis. Although currently a small perturbation model, advances in microprocessor
hardware should allow the simulator to evolve into a real-time, full-envelope, full engine simulation.
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